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In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) 

algorithm on a variant of Satisfiability problem for an ensemble of random graphs 

parametrized by the ratio of clauses to variables, -/ = M / N .  We introduce a set of macro- 

scopic parameters (landscapes) and put forward an ansatz of universality for random bit 

flips. We then formulate the problem of finding the smallest eigenvalue and the excitation 

gap as a statistical mechanics problem. We use the so-called annealing approximation with 

a refinement that a finite set of macroscopic variables (verses only energy) is used, and are 

able to show the existence of a dynamic threshold 7 = yd, beyond which QAE should take 

an exponentially long time to find a solution. We compare the results for extended and 

simplified sets of landscapes and provide numerical evidence in support of our universality 

ans atz . 

PACS numbers: 03.67.Lx,89.70.+~ 

I. INTRODUCTION 

An important open question in the field of quantum computing is whether it is possible to 

develop quantum a1,oorithms capable of efficiently solving combinatorial optimization problems 

(COP). In the simplest case the task in a COP is to minimize the energy function E,, with the 

domain given by the set of all possible assignments of _V binary variables, u = { g ~ ,  . . . . a . ~ } ,  

crJ = kl. In quantum computation this cost function corresponds to a Hamiltonian 7dp 
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where the summation is over the 2' states io) forming the computational basis of L qnantiirn 

computer with N qubits. State 1 0 ~ ) ~  of the j-th qubit is an eigenstate of the Pauli matrix 8; with 

eigenvalue oJ. It is clear from the above that the ground state of Hp encodes the solution to the 

COP with cost function E,. In what follows we shall use two equivalent notations for binary 

variables: Ising spins oJ = 31 as well as bits z j  = (1 - 0 3 ) / 2  = 0. 1. 

Recently Farhi and coworkers proposed a new family of quantum algorithms for combinato- 

rial optimization that is based on the properties of quantum adiabatic evolution [ I ,  21. Numerical 

simulations were performed for the study of its performance for satisfiability problems [8]. Im- 

plementation of these algorithms on a quantum computing device is feasible for COPS where the 

energy function E, possesses a locality property, in a sense that it is given by the sum of terms 

each involving only a relatively small number of bits, that does not scale with N [l, 3, 41. An ex- 

ample of a problem that can have this property Is Satisfiability that deals with 1V binary variables. 

submitted to 111 constraints, assuming that each constraint involves O(1) bits. The task is to find a 

bit assignment that satisfies all the constraints. 

Satisfiability is a basic problem in the so-called NP-complete class [5] .  This class contains 

hundreds of the most common computationally hard problems encountered in practice, such as 

constraint satisfaction and graph coloring. hrP-complete problems are characterized in the worst 

case by exponential scaling of the run time or memory requirement with the problem size 1Y. A 

special property of the class is that any NP-complete problem can be converted into any other 

NP-complete problem in pGlyIlOnlkl l  time on a classical computer. Therefore, it is sufficient to 

find a deterministic algorithm that can be guaranteed to solve all instances of just one of the NP- 
complete problems within a polynomial time bound. It is widely believed, however. that such an 

algorithm does not exist on a classical computer. Whether it exists on a quantum computer is one 

of the central open questions. 

Running of the quantum adiabatic evolution algorithms (QAA) for several NP-complete prob- 

lems has been simulated on a classical computer using a large number of randomly generated 

problem instances that are believed to be computationally hard for classical algorithms [2, 6, SI. 

Results of these numerical simulations for relatively small size of the problem instances ( N 5 
25) suggest a quadratic scaling law of the run time of the QAA with 1V. 

A particularly simple version of Satisfiability is the 1"-complete Exact Cover problem that 

was used in [2] to study the performance of QAA. In this problem each constraint is a clause that 

involves a subset of K = 3 binary variables. A given constraint is satisfied if exactly one of its bits 
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equals 1 dnd the rest of the bits equal 0. In the optimization version of this probiem one minimizes 

the energy function E, that is equal to the number of constraints violated by a given bit-assignment 

0. A generalization of this problem to an arbitrary number K can be called positive 1-in-K SAT 

[91. 
In practice algorithms for NP-complete problems are characterized by a wide range of running 

times, from linear to exponential, depending on the choice of certain control parameters of the 

problem (e.g., in Satisfiability it is the ratio of the number of constraints to the number of vari- 

ables, !?I/:\-). Therefore, a practically important alternative to the worst case complexity analysis 

is study of a typical-case behavior of optimization algorithms on ensembles of randomly generated 

problem instances chosen from a given probability distribution. For example, in the case of pos- 

itive 1-in-K SAT one can define a uniform ensemble of random problem instances. An instance 

Z consists of 1l.l statistically independent clauses, each corresponding to a K-tuple of distinct 

bit-indices uniformally sampled from the interval (1, N) with probability 1/($). 

In the case of an exponential scaling low for the algorithm’s running times tu it is convenient to 

analyze the distribution of a normalized logarithmic quantity log t a l - ! .  This distribution becomes 

increasingly narrow in the limit of large N where the mean value (log tu)  /N well characterizes the 

typical case exponential complexity of an algorithm. For Satisfiability problem the dependence of 

the asymptotic quantity 

7 = lim (log tu)/&- (2) 

on the clause-to-variable ratio -/ = M/LY has the qualitative form shown in Fig. 1. At some critical 

value 7, = -fd algorithmic complexity undergoes the dynamical transition from polynomial to 

exponential scaling law. This transition has been studied recently for the case of a variant of 

the classical random-walk algorithm for the Satisfiability problem [IO]. Function q ( y )  is non- 

monotonic in -/ and reaches its maximum at a certain point -/c > ̂ /d. It was discovered some time 

ago [ll,  13, 141 that -/c is a critical value for the so called satisfiability phase transition: if /̂ < -iC, 

a randomly drawn instance is satisfiable with high probability, Le., there exists at least one bit 

assignment u that satisfies all the constraints (E, = 0). For y > yc instances are almost never 

satisfiable. In the asymptotic limit iV + cc the proportion of satisfiable instances drops from 1 to 

0 infinitely steeply at 

‘V-m 

= elc as shown in Fig. 1. 

The value of ;‘d (unlike e/c) depends on both the problem at hand and the optimization algorithm. 

Comparison of the dynamical thresholds for different algorithms provides an important relative 

measure of their typical-case performance in a given problem. In this paper we will provide the 
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FIG. 1: Solid line shows the qualitative plot of the normalized quantity v/vmax ws h I / N  (qn,ax is a maxi- 

mum value of q). Dashed line shows the proportion of satisfiable instances ws hI/fV. 

analysis of the dynamical threshold for the quantum adiabatic evolution algorithm and also for 

simulated annealing for several versions of the random satisfiability problem. 

11. QUANTUM ADIABATIC EVOLUTION ALGORITHM 

Consider the time-dependent Hamiltonian H ( t )  X ( t / T )  

where T = t /T  E (0. 1) is dimensionless ”time”, KP is the “problem” Hamiltonian (1) and KB 
is a “driver” Hamiltonian, that is designed to cause transitions between the eigenstates of X p .  

Using dimensionless time and setting h = 1 the quantum state evolution obeys the equation, 

~ T ~ l Q ( r ) ) , / t h  = X ( T ) ~ + ( T ) ) .  At the initial moment the quantum state IQ(0)) is prepared to be 

the ground state of X ( 0 )  = RB. In the simplest case 

3=1 0 

where uz is a Pauli matrix for j-th qubit. Consider the instantaneous eigenstates of “ ( 7 )  with 

eigenvalues X ~ ( T )  arranged in nondecreasing order at any value of 7 E ( 0 , l )  

here k = 0.1 .2 .  . . . .2-’ - 1. Provided the value of T (the runtime of the algorithm) is large 

enough and there is a finite gap for all 7 E (0. 1) between the ground and excited state energies, 
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X 1 ( i - )  - A o ( ~ )  > 0. the quantum evolution is adiabatic and the state of the system /Q(i.)) stays 

close to an instantaneous ground state. Ido(.r)) (up to a phase factor). The state loo(l)) coincides 

Rith the ground state of the problem Hamiltonian X H P  and, therefore, a measurement performed 

on the quantum computer at the final moment t = T (7 = 1) will yield one of the solutions of 

COP with large probability. 

The standard criterion for adiabatic evolution is usually formulated in terms of minimum exci- 

tation gap between the ground and first exited states [12] 

C 
b 

T B -  , AX,;, = m m  [X1(7) - X0(7 ) ] .  ax2, O<r<l 

Here the quantity E is less than the largest eigenvalue of the operator 7 - l ~  - 3 - t ~  [IS] and scales 

polynomially with !V in the problems we consider. 

111. QUASICLASSICAL APPROXIMATION AND COMBINATORIAL LANDSCAPES 

In the computational basis (1) we have 

U up’ 

here b[m, n] denotes the Kronecker delta-symbol and the summation is over the pairs of spin 

configurations CT and CT’ that differ by the orientation of a single spin, ~ ( c T ,  a’)=l, where 

. IV 

denotes a so-called Hamming distance between the spin configurations CT and CT’, that is the num- 

ber of spins with opposite orientations. Eq. ( j j  in the computational basis takes form 

X(T)du(7)  = TEUdU(7) - (1 - T )  6 [d(cr, a!). 11 %47) (9) 
U’ 

(here we drop the subscript indicating the number of a quantum state in X and om). In what follows 

we assume that typical energies E, = O(N),  but the change in the energy after a single spin flip is 

O( 1). This assumption about the energy landscape holds for instances of the Satisfiability problem 

with the clause-to-variable ratio -LI/iV = O( 1). the case of most interest for us (see the discussion 

in Sec. I). 

We now consider a set of functions (X, = CL(a.Z), 1 = 1, . . . . IC}, referred to as (com- 

binatorial) landscapes, that depend on a problem instance Z and project a spin configuration u 
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onto a vector {,Y,} with integer-valued components. Prior to considering a specific COP her? we 

make certain assumptions about the properties of landscapes and apply them to the analysis of the 

minimum gap in the QAA. 

In particular, we assume that, similar to energy, landscapes {X, = C,(a.  Z)} are macroscopic 

functions, so that the typical values of X, are Q(!V), and possess a certain universality property 

in the asymptotic limit Zi oc. Specifically, the joint distribution of { C [ ( a , Z ) }  over the spin 

configurations CT forming the 1 -spin-flip neighborhood of an “ancestor” configuration CT‘ depends 

on a problem instance Z and spin configuration a’ only via the set of parameters {.Xi = Cr, (a’: I)}. 
We then define a quantity 

K 

In effect, the above universality property of landscapes implies that the set of all possible 

spin configurations cr is divided into “boxes” with coordinates {X,} where XL = C~(c7). and 

P ({X,} I {Xi}) (10) represents the transition probability from box {X,} to box {X;}. In particu- 

lar, it obeys Bayes’ rule 

where a({X, ) )  is the number of different spin configurations in the box {A7,}. 
We consider energy to be a smooth function of landscapes 

so that /i?€,’3LYl/ = c?(l). Furthermore. we assume that. on one hand, the change in C‘[io.Z) 

after flipping one spin is 0(1), for typical problem instances. On the other hand, we assume 

that correlation properties in a neighborhood of a box {X,} described by P ({-Y,} I {Xi}) vary 

smoothly with box coordinates on a scale 1 5 16Xll << fV. Therefore if we write the transition 

probability in the form 

then p ( { k l } ;  {z,}) is a steep function of its first argument: it decays rapidly in the range 1 5 
lk~l << 1V for each I-component. However this is a smooth function of its second argument: it 

vanes slightly when coordinates 2, change on a scale lblc,I << 1. 
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One can shovv that under the above assumptions the quantum amplitudes 0, corresponding to 

the smallest eigenvalue depend on the spin configuration CT only via the coordinates of thes box 

{-Yl} to which it belongs. Then we look for the solution of (9j in the following form: 

where lq({Xl} ,  .)I’ gives the probability of finding the system in the box {X l } .  Plugging (14) 

into (9) and making use of (1 I),( 12) we obtain: 

X(r)y(X. T )  = TE(XF+(X. 7 )  - (1 - 7-)N qx. X’}) (F(X’, 7 ) .  (15) 

(16) 
X‘ 

x E { X I .  x2,. . . , XK}; 

(herzafter we use the above shorthand notation for the set of landscapes). In (15) we introduced 

L 

L(X> X‘) = L(X’,X) = P(X’JX) - PX) P(X’) ’ 
P(X)  = 2-”R(x), 

where P(X) is a probability that a randomly sampled configuration CT belongs to a box X. We 

shall look for a solution of (15) in the WKB-like form 

p(X. T j  = exp (-kV(X, T ) )  , (18) 

so that 

X’ 

We now introduce scaled variables (cf. (13)) 

l-7- x r=-  , g = - .  
X 
N‘ 7- r i\- 

x = -  

and also 

where s(x) is an entropy function. Based on (17) and the properties of the transition probability 

(see Eq. (13) and discussion after it) we assume that the sum over X’ in (19) is dominated by terms 

with IX’ - XI = a( 1). Then we can use an approximation 
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(3  1) we obtain after some transformations: 

aw(x, r)/ax. Plugging (22j into (19) and malung use of Eqs. (13),(17).(20) and 

= qx. vkvl r). (23 )  

h(x. p; r) = E(X) - r C p ( k :  x)e-k (vs /2 - -p ) .  

k 

(here Vs I as(x)/dx). This is a Hamilton-Jacobi equation for an auxiliary mechanical system 

with coordinates x, momenta p = V w ,  action w, Hamiltonian function h(x ,  p: I‘) and energy g. 

Using the symmetry relation 

that follows directly from Eqs. (1 1) and (17) we obtain that the minimum of w ( x .  r) over x where 

V w  = 0 necessary corresponds to the minimum of the functional: 

where f (x ,  r) h(x! 0, r) and 

!(x) = P(Vs/2: X) . p(y; x) E Cp (k; X) e-k ’. (26 )  
k 

The summation in (23) and (26 )  is over components kl of k in the range Icl E (-x, w). In what 

follows, we shall refer to F(y, x) in (26 )  as a “Laplace transform” of p(k; x). 

We note that ((x) = Ex, L(X’.  X) and one can use Bayes rule and inequality of Cauchy- 

Bunyakovsky in (17) to show that that the positive-valued function !(x) is bounded from above, 

0 < [(x) 5 1. This shows that the analysis of the effective potential based on the WKB approxi- 

mation (23) is self-consistent in the asymptotic limit ili - 00. 
It follows from the above analysis that the ground-state wavefunction 41(x,r) E ~ ( X , T )  

is concentrated in x-space near the bottom of the “effective potential” given by the functional 

f(x, r), i.e. near the point xr(r) where f(x. r) reaches its minimum. In this region S % ;,‘Ax, 

where matrix A is positive definate. and according to (18). the wavefunction has a Gaussian form 

with the width x 1 / n .  

The ground-state energy g = g(r) is given by the value of the effective potential f (25) at its 

minimum 
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\\’e note chat as r - 0 the shape of the effective potential fix. I?) approaches that of the energy 

function ~(x) and therefore its minimum x,(T) - x g  where xo is a minimum of ~ ( x ) .  It can be 

shown that in this limit the ground-state eigenvalue approaches the minimum energy value E ( x ~ )  

and the eigenvalues of A-l approach zero (and so does the characteristic width of the wavepackage 

~ ( x .  r)). The spin configurations that belong to a box xo in x-space correspond to the solutions of 

the optimization problem at hand. It is clear that one of the solutions can be recovered with high 

probability after a measurement is performed at the end of the “quantum annealing” procedure. 

Variational Ansatz: For cases in which the set of macroscopic variables {X,} is not suf- 

ficient (in statistical sense (13)) to describe the dynamics of the quantum algorithm, one can 

still implement the above procedure as an approximation, using a variational method. Intro- 

ducing a Lagrangian multiplier A, one looks for the minimum of the functional F ( p , X )  = 

(ojlFl/o) - X((ojo> - 11, using a variational ansatz (14) for the wavefunction. The solution of 

the variational problem is provided by Eqs. (18)-(27). The smallest eigenvalue g (27) corresponds 

to the value of the Lagrange multiplier at the extremum, X = TNg, and the maximum of the 

variational wavefunction corresponds to the minimum of the effective potential f (25). 

A. Global bifurcations of the effective potential 

However, in the case of a global bifurcation where the effective potential f(x. I?) possesses 

degenerate or nearly degenerate global minima, the answer is modified. If for ‘some value of 

r = r., a global bifurcation occurs. in our example this would mean that for this value of r, two 

values of x, x,’ and x; give a global minimum to f(x. I?). In such a case, the smallest eigenvalue 

is not doubly degenerate: rather an exponentially small gap OX,,, between the ground and first 

excited state is developed. itself being proportional to the overlap between two wave-functions, 

peaked around x,’ and x; respectively. 

To estimate the overlap we note that at r, the two global minima of the effective potential 

f(x, r,) correspond to the two coexisting fixed points of the Hamiltonian function in (23) with 

zero momentum and the same values of energy g, 
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Then to logarithmic accuracy we have 

1 
- log ASrnln = dt’ [ X(t’)p(t’) - h(x(t’) .  pit’)) j f O(l/-Y). 
1V 1: 

where ( x ( t ) .  p(t) ) is a heteroclinic trajectory connecting the two fixed points of (23) 

X(t) = d h / d p ,  p ( t )  = -dh/dx, 

x(t - f o o )  = x:, p(t 3 hG) = 0 

From the algorithmic perspective this means that when r gets close to r,, it has to change 

exponentially slowly (cf. Sec. 11 and Eq. (6)). This could be called a critical slowing down in 

the vicinity of a quantum phase transition. If simulated annealing (SA) is used and a similar 

phenomenon occurs, the value of the temperature T, is the point where a global bifurcation occurs 

in the free enersy functional 

f (x ,  T )  = E ( X )  - Ts(x) .  (32) 

By comparing the free energy functional (32) with the functional (25)  corresponding to “quantum 

annealing” (QA), we note that in QA the quantities r and t(x) play the roles of temperature and 

entropy in (SA), respectively. 

We note in passing that a similar picture for the onset of global bifurcation that can lead to 

the failure of QA and (or) SA was proposed in [IS, 191 for the case where the energy E, is a 

non-monotonic function of a single landscape parameter, a total spin oJ. In this case the 

dynamics of Q A  can be described in terms of one-dimensional effective potential [20.23]. 

N 

IV. THE MODELS 

An instance of a Satisfiability problem with I\- binary variables committed to -11 = -f1V con- 

straints (where each constraint is a clause involving h’ variables) can be defined by the specifi- 

cation of the following two objects. One of them is an M x Ai matrix 6, the rows of the matrix 

are independent IT-tuples of distinct bit indexes sampled from the interval (1. N ) .  The m-th row 

of 6 defines the subset of the I< binary variables involved in the rn-th clause. The second object 

is a set of boolean functions B = { bm}, with each function encoding a corresponding constraint. 

A function b, = brn[oGm1, gGm2, . . . , oGmK ] is defined over the set of 2K possible assignments 

of the string of K binary variables involved in the m-th clause. The function returns value 1 for 
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assignments of binary variables that satisfy the constraint and 0 for bit assignments that violate it. 

Then the energy function equals to the number of violated constraints 

m=O 

here Z = (G, B )  denotes an instance of a problem. 

The matrix 6 defines a hypergraph G that is made up of the set of N vertices (corresponding 

to the variables in the problem) and a set of hyperedges (corresponding to the constraints of 

the problem), each one connecting K vertices. An ensemble of disorder configurations of the 

hypergaph corresponds to all the possible ways one can place A4 = 7-V hyperedges among i”i 

vertices where each hyperedges carries K vertices. Under the uniformity ansatz all configurations 

of disorder are sampled with equal probabilities (ie.,  rows of the matrix 6 are independently and 

uniformly sampled in the (1 +V) interval). 

Boolean functions b, may also be generated at random for each constraint with an example 

being random K-SAT problem [16, 171. However here we consider slightly different versions of 

the random Satisfiability problem that are still defined on a random hypergraph G but have a non- 

random boolean function b, = b, identical for all the clauses in a problem. One of the problems 

is Positive I-in-K Sat in which a constrain is satisfied if and only if exactly one bit is equal 1 and 

the other K-  1 bits are equal 0. The boolean function b for this problem takes the form 

c r , = i l ;  p =  1 > 2 ;  ...>A- 

We shall also consider another problem. Positive K-N&-Sat. in which a clause is satisfied unless 

all variables that appear in a clause are equal (”K-Not-All-Equal-Sat”). The boolean function b 

for this problem takes the form 

Both problems are NP-complete (Appendix A). It will be shown below that they are characterized 

by the same set of landscape functions. 
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V. LAXIISCAPES: ANNEALING APPROXIMATION 

For a particular spin ( a )  and disorder (G)) configurations, all clauses can be divided into 2 K  

distinct groups according to the values of the binary variables ,that appear in a clause. We will label 

the different types of clauses by vectorial index a = {a1:  . . . , air(},  ap = +1. We now divide 

the set of 2" spin configurations into boxes identified by certain numbers of clauses of each type, 

!V Ma, and also by the king spin in a configuration N q  

Different boxes correspond to macroscopic states defined by the set of parameters ( q ,  {lJIa}) with 

q E (-1; 1) and Ea Ma = -/. The energy function can be expressed via (36) as follows (cf. 

(33)-(35)): 

K r K l  
E ({&fa}) = 71 - CmMm. M ,  E Ma b K - 2m. aP (35)  

m=O a p= 1 

where the form of the coefficients (, depends on the problem: 

6jm: 11 (Positive 1 -in-K Sat) 

1 - b[m. 01 - h[m, A*] (Positive K-NAE-Sat) 
(39) 

In the following we compute an approximation to the effective potential ( 2 3 ,  using the land- 

scape functions (36) ,  (37). According to (26)  it depends on the entropy function s (q ,  { : L l a } )  and 

the transition probability (13) between different macroscopic states. Recalling that variables q and 

iLIa are normalized by the factor A- we study the probability of transition, p ( n .  { T ~ } ;  q ,  {Ma}) ,  

from the state ( q .  { i \ i lQ}) to the state ( q  + n/,Y. {-\Ia f ra/-V}). The Laplace transform of p with 

respect to n; { r a }  has the form (cf. (26))  

We assume that all binary variables are also subdivided into distinct groups based on their vaIue 

o = 51 and a vector k with integer coefficients kg indicating the number of times a variable 

appears in a clause of type N in position p .  Clearly, consistency requires that kg = 0 unless 
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crp = c. We now define a quantity c,>k which is equal to the fraction of spins with given g, k. For a 

spin configuration (T there exists a set of coefficients {ca k }  with elements of the set corresponding 

to all possible values of g and k (there will be many 0’s in a set for each spin configuration). In 

general, there are exponentially many sets {C,,k} that correspond to a macroscopic state (q ,  {-\.ru}) 

a.k c,k 

Coefficients { Cg.k} are concentrations of spin variables with different types of “neighborhoods”. 

We shall assume that in the limit of large 1%- the distribution of coefficients C,,k corresponding to 

the same macroscopic state (41) is sharply peaked around their mean values (with the width of the 

distribution x 

Under the above assumption we can immediately compute the Laplace-transformed transition 

probability (40) in terms of the coefficients c,,k. Indeed, consider flipping a spin with value n 

and neighborhood type given by vector k. This will change the total spin by -2a and for each 

clause of type a and index p E (1, K )  the value of IVMa will decrease by kP,. On the other 

hand, for the clause type a’ = cU(p, a)  obtained by flipping a bit in p-th position in a,  Nibfa/ is 

correspondingly increased by kg. Hence the Laplace-transformed transition probability is 

r 1 

u: k L P@ J 

where the coefficients cV, k are set tc their mean values in a macroscopic state (41)). 

A. Entropy and coefficients C,,k in a macroscopic state defined by q and { I ~ I ~ }  

Here we use the annealing approximation to estimate the mean values of c,,k and also of a 

macroscopic state (q!  Ma). We start by introducing the concept of annealed entropy. Let JV be 

the number of spin configurations subject to some constraints. In general, it is a function of the 

disorder realization. The annealed entropy is defined as the logarithm of its disorder average: 

.sann = ln(n/>. Note that for the correct, quenched, entropy the order of taking a logarithm and 

disorder average is reversed. 

Since in the random hypergraph model all disorder configurations are equally probable, an- 

nealed entropy is given as sa,, = Ini\/S.C - In.VG, where n / s . ~  is the total number of spin and 

disorder configurations and ,bk is the number of disorder configurations. 
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For enumerating all possible disorder configurations we depart slightly from the traditional 

random hypergraph model. In our model all clauses are ordered (two disorder configurations where 

any two clauses are permuted are deemed different), clauses can be repeated (the same clause can 

appear twice), the order of variables in a clause is important (two disorder configurations are 

different if the order of variables in any clause is changed), and finally, variables can be repeated 

in a single clause. This change does not alter the underlying physics, since the probability that 

two identical clauses appear is infinitesimal, and a variable enters a clause twice in at most O(1) 

clauses, which can be safely neglected. As regards the distinction between the disorders with 

permuted clauses, this only introduces a combinatorial factor which cancels out. The advantage is 

that each disorder can be represented as a sequence of fW K-tuples of integers from 1 to AV. 
We will first compute the annealed entropy of a macroscopic state (4 .  {Llda}) under addi- 

tional constraints: we fix the values cu,k and compute the annealed entropy as a function of 

q .  {i&}. {egk}. Recalling that !Ua are the numbers of clauses of a given type scaled by 117, 
and the total number of clauses is -I-)-, we obtain the number of joint spin-disorder configurations 

as a product of the foilowing factors: 

(i) the number of ways to assign types to clauses (X-/)!/ f l a (NMa) ! ,  

(ii) the number of ways to assign types to variables A*!/ flu,k(Lvcu,k)!,  

(iii) for all p ,  a,  the number of ways to permute the appearance of variables in p-th position of 

clauses of type a: (NMa, ) ! /  n , , k ( , k ~ ! ) n ‘ c ~ k ,  

Consequently, the annealed entropy is given by 

r 1 

In the large ;V limit we replace cu,k by their annealed averages. i.e., the values that maximize the 

annealed entropy. In its simplest form, we place no constraints on cu,k except consistency require- 

ments (41). Associating Lagrange multipliers ,\ and In & with these constraints, the expression 

for the entropy can be rewritten as 

a 
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The valuzs of c,,k are given by 

and Z is given by 

The values of the Lagrange multipliers A. p: are related to q,  {:VIa} via 

d lnZ 
ax 

- -  - 4:  

From here we obtain the expression for the Lagrange multiplier ,us 
Ma 1 -I- apq 
P: 2 

- -- 

Then introducing a new notation 

P, Q 

1 i C Y p  
AI* = - !\Ia ~ 

2 
P> Q 

we obtain 

Then the entropy can be rewritten in the following form 

We now use the following equations 

and obtain the expression for the second Lagrange multiplier X 

In - 

(49) 

h'. (52)  

(53 )  

Upon substitution of X from the above into the expression for sann (52) we finally obtain the 

annealed entropy 

a 

Also the coefficients c,,k are given by (45),(46) with Lagrange multipliers given in (49) and (54). 



16 

€3. Effective potential 

Consider a factor !(x) = ( a j / a r ) ,  ( 2 3 ,  (26) in the expression (25) for effective potential with 

x = ( 4 .  {12.fa}). It follows from (26) that to find this factor we need to evaluate the Laplace- 

transformed probability (40,42)) at 

(56)  
1 1 
2 2 

This is where the Lagrange multipliers come in handy as we can immediately claim that 

e = -aSann/dq3 Y a  = - a S a n n / a a .  

as,,,/aq = -A (57) 

(58) 
&!Ia 

dsa,,/alLIa = In + - In  AI^. 
P a  P 

Note that in differentiating with respect to -LIa above we omitted the constant term. This is permis- 

sible since only differences aq,,,/d4Ja - 8(-7,,,/a-JJff, appear in Eq. (42). A further refinement is 

to write 

Using this in the Eqs. (26),(42), we obtain 

Since - c p , ( ~ p ~  - gb,) E up (where a' is obtained from a by flipping p-th bit) and also 

the expression is considerably simplified 

where the sum is over pairs (a, CY') that differ in exactly one position 

- K  

To evaluate 2 we write 
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and the expression for I“ becomes 

here ILI= are given in (50). 

We note that the effective potential f ( q .  {?.Ia}) = E ( { M ~ } )  - r!(q. { M a } )  is symmetric with 

respect to permutation of individual components in {-\Ia} corresponding to different orders of 

-1’s and +l’s in the vectorial index a. We look for the minimum of f(q. {Ma}) using symmetric 

ansatz 

where m is the number of -1’s in a. Substituting (63) into (62) and rewriteing 

where we defined e ( q .  { M m } )  f !(q, {:\Ia}). The effective potential is then 

with energy given in (38). In the case of the SA algorithm the corresponding free-energy functional 

(32) is 

J(q .  {/Urn}) = Ef{,tLZm}) - TS(q. {M,})  (S-4) (66) 

where the entropy function equals 

m=O 

If we were to use an even smaller set of macroscopic parameters (e.g. only the energy E )  

we can still employ formula (64) with the proviso that unspecified variables should be taken to 

equal their most likely values, i.e. those that maximize the entropy S ( q ,  {,Urn}) not the landscape 

j ( q .  {,Urn}). For example. in the case of energy-only landscapes. e = e ( ~ ) ,  the values q.  {)Urn} 

that maximize s(q. {,Urn}) for a given energy E and number of hyperedges -,iV (Ern=, iU, = r )  
should be computed and then substituted into the expression for e(64). 

K 
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FIG. 2: Static yc (circles) and dynamic -id 

(crosses) transition for positive 1-in-K SAT vs 

K. 
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FIG. 3: Static yc (circles) and dynamic ^/d 

(pluses) transition for positive K-NAE SAT vs 

K .  

In Fig. 4 we plot time variations of the landscape parameters, M, = M,,, corresponding 

to the global minimum of the effective potential. In Fig. 5 we plot a time-variation of the scaled 

ground-state energy ,q given by the value of the effective potential at its minimum. Singular be- 
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hdbior corresponding to the first-order quantum phase transition at certain T = T* (r = r,j can 

be clearly seen from the figures. Plots in Figs. 4 and 5 correspond to precisely the static transition 

y = for the case of h- = -4 in 1-in-K SAT problem. In the region rSd < -/ < pIC there are 

FIG A. Plots of the landscape parameters ,M, = M., at the global minimum of the effective potential, 

vs 7 for h- = 1 (I-in-K SAT problem) Curves labelled 0-4 correspond to .M,o/-i through A4-4/-/ 

-0 051 

-0 1 

I 

I I 
1 

055 0 7  0 75 O B  
T 

-0 25 

FIG. 5: Scaled energy of adiabatic ground state g vs T 

for K=4 (1-in-K SAT problem). 

exponential (in X )  number of solutions to Satisfiability problem but the runtime of the quantum 

adiabatic algorithm to find any of them also scales exponentially with N. This is a hard region for 

this algorithm. We note, that in the limit of K + x the annealing approximation becomes exact. 

Together with the fact that for large K y d  and seem to be distinctly different provides evidence 

that this result (existence of hard region for quantum adiabatic algorithm) is robust. 
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FIG. 6 :  Results of numerical simulations and their comparison with theory. Depicted are Laplace transforms 

of ibI1 for 1-in-3 SAT. Numerical results: curves that have different colors correspond to different random 

problem instances; curves of same color correspond to different random bit strings. The dashed black line is 

a theoretical result based on the annealing approximation. The insets (a)-(e) depict instances with lo', lo4, 

lo", lo6 ,  and 10' binary variables. Since the error is not recognizable we replot in (0 a magnified section 

of inset (e). The bit strings were sampled with q = 0.422, J.40 = 0.048, M I  = 0.416, M2 = 0.123, 

J u 3  = 0.013, corresponding to hfIiY = 0.6. These values correspond to the energy E,/2 and they are 

shifted by 10% from the most likely values of q;  {M,} for this energy (this shift is >> iV112). We also note 

that for 1-in-3 SAT numerical simulations give static phase transition at -lc E 0.62). 
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VI. LJ-IVERSALITY PROPERTY FOR TR--INSITIOX PROBABILITIES 

Here we study the universal features of the transition probability in (10) for the set of macro- 

scopic variables corresponding to the (normalized) total Ising spin q and numbers of clauses of 

different types {M,} (38) (the type of a clause is equal to the number of unit bits involved in the 

clause). For simplicity, we shall focus in this section on the case K = 3 only. 

To clarify the above choice of macroscopic variables we consider ~II auxiliary quantity: a 

conditional probability distribution of the macroscopic variables (q, {M,}) over the set of all 

possible configurations u obtained by flipping r bits of the configuration u’. The first moments of 

this distribution corresponding to ,bfm, 

can be easily computed by counting the number of ways one can flip r bits in configuration u’ to 

transform a K-bit clause of m’ type (ie., with m’ unit bits) into a clause of the m,-th type 

(69) 
N - K 

r -2p -m+m’  
p,m‘=O 

(here we use the convention (i) 5 0 for m < 0 and m > n). In the double sum above values of 

M ,  are multiplied by the number of possible ways to flip three groups of bits: p unit bits in a 

clause of m’-type, p f m - m’ zero bits of this clause, and T - 2p - m i rn’ bits of the configuration 

CT’ that do not belong to the clause. Similarly, one can show that the first moment corresponding to 

the variable q equals q’(1- ~ T , ’ ~ V ) .  It is clear that dependence of the first moments on the ancestor 

configuration u’ is only via the variables 4’. ,U& for that configuration. 

In the limit, r >> 1, the above conditional distribution has a Gaussian form with respect to 

p and ,Urn. Elements of the covariance matrix C:iy4/(uf) = 0 ( r ) ,  and correspondingly, the 

characteristic width of the distribution is 0(r1”). For a configuration u’ randomly sampled in the 

box (4. {itlrn}) the r.m.s. deviation of the elements of C;$’(CT’) from their mean values in the box 

is 0 ( It is clear that in the limit r >> N1/2 the covariance matrix elements can be replaced 

by their mean values for the macroscopic state ( q ,  {M,}). Therefore in this limit the conditional 

distribution after r spin flips starting from some macroscopic state depends only on the values of 

14. {.LLm}) in this state (universality property). 

One can show that for r << the conditional distribution after r spin flips can be expressed 

via the distribution (10) with r = 1, using a standard convolution rule. However for r = 1 the 



33 -- 

form of [he distribution is non Gaussian and we were not able to establish unii..ersa!ity properties 

in the general form. Instead we performed a series of numerical studies. In Figure 6 we present 

the results of numerical simulations and the comparison with analytic results within the annealing 

approximation. One can see that the theory is in very good agreement with experiment. 

VII. CONCLUSION 

We have formulated an ansatz of landscapes and studied the complexity of the quantum adia- 

batic algorithm within the annealing approximation and found the existence of a dynamic transi- 

tion and a hard(exponentia1) region above that dynamic transition. However, a similar analysis of 

simulated annealing did not reveal any phase transitions. We explain this as follows. The anneal- 

ing approxiination should fail for sufficiently small energies. It is commonly known that simulated 

annealing can find suboptimal solutions with very small energies very efficiently. but it takes an 

exponentially long time to actually reach the ground state. The annealing approximation does not 

correctly describe very small energies and cannot be used to establish its complexity. Note that 

we can reconcile this with the fact that the annealing approximation becomes exact in the limit 

K -+ x: if the annealing approximation fails for E 5 EK we expect that Eli is decreasing to 

zero as A- increases. However for any finite K ,  the free energy computed within the annealing ap- 

proximation is free from any singularities indicative of a phase transition. To study the complexity 

of simulated annealing one needs to use the tools of spin glass theory, in particular, the repIica 

trick [15-17]. 

In contrast, in our analysis of the quantum adiabatic algorithm, we observed a first-order phase 

transition. and. importantly, it happens for energies E - O(E,) (where E, is the expected 

energy at infinite temperature E, = C, E=. Moreover, the energies on both sides of the 

transition, relative to E, seem not to change appreciably with increasing K .  Since the annealing 

approximation for this range of energies can be used, the prediction for the dynamic transition 

should survive, though the exact numerical values may acquire corrections. We have recomputed 

the dynamic transition with simplified energy-only landscapes (see Fig. 7). For 1-in-K SAT one 

can clearly see that the relative correction quickly diminishes. We believe that same happens for K- 

NAE SL4T if sufficiently large K ’ s  are considered. If this indeed holds, it serves as a corroboration 

that our results are correct numerically for large E(. The idea of using energy-only landscapes was 

present in [7] as well as [21] and [22]. A jump in the time-dependence of the expected energy 

1 
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value was seen in numerical simulations [SI. indicative of first-order phase transition, though a 

diffirent ensemble was considered (only instances having a unique solution were considered). 

i 

. r 

0 02 

O ' 4  5 6 8 9 10 

FIG. 7: Relative difference between predictions for the dynamical phase transition point in the case of full 

( - J ~ )  and energy-only (;f) landscapes vs of A- for 1-in-K SAT (crosses) and K-NAE SAT (pluses) 

We emphasize that the annealing approximation employed in this paper essentially neglects 

fluctuations due to disorder, and describes the transition as a global bifurcation between two 

macroscopic states (pure states) and the complexity is due to tunnelling between them. In con- 

trast, spin glass theory predicts the existence of an infinite number of pure states[l5]. Secondly, 

affirming our results for large A' ignores the structure of the problem, since that limit corresponds 

to the so-called random energy model, where one does not expect to do better then O(2'v'v/") via 

any quantum algorithm. Consequently, the complexity could be determined not by the unique 

minimum gap. but by a cascade of level repulsion. Numerical studies. however. support the pic- 

ture with a unique minimum gap. Also. the first-order phase transition occurs for large energies. 

Although it is absent for small h', we believe that a better approach (as compared to annealing 

approximation) will reveal it. iMoreover. we believe that the order of the transition will remain 

unchanged, suggesting that the disorder may be irrelevant for the determination of the order of the 

phase transition and, consequently, for the complexity of the quantum adiabatic algorithm. That 

is, the exponential complexity is not due to the true combinatorial complexity of the underlying 

random optimization problem but rather due to peculiarities of the driver term and a particular 

ensemble of random instances considered. In fact, for a symmetrized variant of the exact cover 

problem, the same phenomenon was observed -the exponential slowdown - although the problem 

did not possess any randomness [lS. 191. In fact, a ground state of that problem could be found 

in O(1Y) time. However, it was possible to modify the driver term in the annealing Hamiltonian 



[20, 231 to circumvent the siowdown. It is quite possible that a sirriilar change of driver term c m  

achieve same gods in present case. although we have not analyzed this scenario. In such a case. 

one would have to go beyond the annealing approximation to study the complexity. 
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APPEIWIX A: ON THE NP-COMPLETENESS OF POSITIVE 1-IN-A’ SAT AND 

POSITIVE K-NAE-SAT. 

We set out to prove that both Positive 1-in-K Sat and K-NAE-Sat are NP-complete. It is 

straightforward to see that it takes a polynomial time to verify the assignment, so these problems 

are in hT. We now prove that they are as hard as the Satisfiability problem, which is NP-complete, 

by showing that any boolean formula can be represented as an instance of these. 

1. Positive I-in-A- Sat 

A clause of type (z: . . . , I, y j  necessarily implies x = 0 and y = 1; hence we can represent 

constants 0 and 1. A clause of type ( 0 : .  . . ~ 0, x: y) implies z = ~ y .  Finally, a clause of type 

(0, . . . , 0, z: y. z )  is equivalent to a 3-clause (x. y: z )  so that we can restrict ourselves to h’ = 3 

without losing generality. 

For h’ = 3,  immediately observe that three clauses (”c: z ,  u’)(y, z, u”)(u, d, ut’) with free vari- 

ables u: d, U” implies z = ~ ( z  A y). This basic building block is in fact sufficient to build any 

boolean formula, as a result, any boolean formula can be cast as an 1-in-K SAT formula. 
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2. Positive K-NAE-Sat 

A clause of type (x; . . . ! z, y) necessarily implies z = 13, and (z, . . . , z,y, z )  is equivalent 

to ( r c ,  y. z )  so we once again restrict ourselves to A’ = 3. In contrast to 1-in-A’ problem, we 

shall require a non-trivial representation offulse or inre. We will use pairs of variables to denote 

variables of the boolean formula. Pairs 00 or 11 will represent valuefalse and pairs 01 or 20 will 

represent true. 

The next building block, (z, y: t )  (y; z ,  t )  ( z!  1, t )  ensures that t = I if the majority of z, y, z 

are 0 and t = 0 if the majority are 1. We shall use a shorthand f ( t ;  xl y: z )  to denote this. The 

expression f ( z l ;  zl, yl ;  yz)f(zz;  z2, yl !  y2) then ensures z = LL: A y where z, y, z are represented 

as pairs zlz2, y1y2, zlzz as indicated above. The operation of negation is trivial to represent: if 

z = z1x2 then ?x ( ~ x ~ ) z ~ .  These two are sufficient to constmct any boolear? formula. 

APPENDIX B: NEXT ORDER APPROXIMATION FOR LANDSCAPES 

A better approximation for the values of critical clause-to-variable rations can be obtained if 

we specify the constraint that the distribution of vertex degrees be Poisson (as it is supposed to be 

in a random hypergraph [24]). To be precise, we specify that 

Consequently, with this constraint the following expression for c,,k is obtained: 

exs np [k,! f l 0 ( p 9 g , / ~ g ! ]  

q k p )  
co,k = c{kp} 

where we use 
/ / 

(B2) 

Annealed entropy can be rewritten in the form 

where In Z is given by 
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The equations relating q .  {Ma} and A. {&} dre given in (47).{48). 

Similarly to Sec. V B  we will use the notation (50). Since 1nZ depends only on X and ,L, 

d In Z/d& depends only on cP. Thercfore, ] Ia /& = "I., /pDP.  Correspondingly. 

For convenience, we introduce new variables 

+h p ~ ; = p e  . 

We then readily obtain 

In 2 = -/In 1-1 + ck ln[2 cosh(X + kh)] .  
k 

(-,Kjk --,K (where k = Cp kp and ck = - k !  e ) and p drops out of the expression for sann altogether: 

- &I, In Ma -+ AI+ In iW+ + 1bIL In hl- + y In -1 - -/K. 
a 

It is easy to see from this expression what the equations for A, h are: 

kck tanh[A T kh] = M+ - 1bf- 
k 

We now turn our attention to the function Etq, {-JIa}) given by (42) with B and y, evaluated from 

Eqs. (56).(58). The computation of e Y a - y a '  yields 

Multiplied by & this becomes 

The expression for !(q.  {M,}) can be written in the form (cf. (59)) 
r 1 



with the internal sum running over k consistent with a set of { k p }  (El). Substituting the quantities 

defined above this becomes 

After some transformations we finally obtain 

c<, a'> d- 
4- 

cosh[X t kh] t ( q .  {Ma}) = Ck 
k 

where A; h are given by (50),(B6). Using symmetric ansatz (63) it is straightforward to calculate 

from (B10) the restricted function ?(q, { M m } )  (cf. (64)). We must note however, that although 

this represents a next-order improvement over annealing approximation, the relative changes in 

and -fd computed with this improved approximation are nearly imperceptible (N lo-')). 


